
Jackson Merrick, Anand Nagpurkar, Joao Pedro Fonseca,
Terry Barrigah, Yash Tahiliani

Inverse Kinematics
Approximation with
Machine Learning

Background

Inverse
Kinematics
Solve for joint angles
(joint-space) from
end-effector position
(task-space)

Traditional
Methods
Traditional methods
involve numerical
solvers that are
Jacobian-based and
are iterative. Often are
slow and provide one
solution when there
are multiple
possibilities

Using AI/ML
in IK
Neural network-based
approaches to IK and
reachability
estimation can
outperform
conventional solvers in
both speed and, with
careful design,
generalization.

Project Goals
● Predict joint-space solutions for 4-DOF arms: We aim to rapidly

estimate feasible joint configurations for a desired end-effector
pose using a machine learning regressor, bypassing slow iterative
solvers. By mapping 3D position and yaw orientation to joint angles,
our model enables real-time inverse kinematics suitable for online
control.

● Classify the feasibility and conditioning of postures: We seek to
identify, via classification models, whether a desired end-effector
pose is reachable (i.e., there exists at least one valid solution) and
whether the associated joint configuration is well-conditioned for
reliable control.

Project Evolution
● 4-DOF IK Regression Pipeline: Developed a robust

supervised learning pipeline for 4-DOF arms, achieving
sub-centimeter accuracy and efficient inference despite
reduced complexity.

● 6-DOF Classification Approach: Due to the
high-dimensional, multi-modal nature of 6-DOF IK, we
transitioned to classification models, predicting the
feasibility and expected quality of IK solutions

Problem Definition
6-DOF Feasibility & Conditioning Classifier

● Observed that directly learning inverse kinematics for a 6-DOF
robot using regression was ineffective due to the complex and
highly multimodal nature of the solution space.

● Implemented a classifier that categorises the quality of
end-effector poses based on the inverse condition number of the
Jacobian matrix. Labels we used are: unreachable, reachable but
near-singular, reachable and adequately conditioned, and reachable
with high manipulability.

● A k-1 value near zero indicates a singular configuration where
certain directions of movement are lost, while a value near one
implies high manipulability and stability.

● Manipulability refers to a scalar measure of how easily a robot’s
end-effector can move in different directions from a given posture.

Classification Data
● Joint space sampling for reachable points (N

= 400,000)
● Reachable points classified on percentile

basis of inverse kappa (bottom 20%, middle
60%, upper 20%)

● For unreachable points: KDTree filtering based
on reachable dataset plus inverse kinematics
fallback (N = 160,000; half inside arm sphere
and half outside)

Classification Model
● Model: Multilayer perceptron implemented in

PyTorch using torch.nn
● Input: 7D task-space vector

[x, y, z, qx, qy, qz, qw].
● Output: 4 logits (one per class).
● Hidden Layers: Four nn.linear with

hidden_size = 256 (optimized experimentally)
● Activations: nn.ReLU after each hidden layer

introduces nonlinearity and prevents gradient
shrinking

● Final Layer: Linear, feeding into
CrossEntropyLoss()

Classifier Training
● Optimizer: torch.optim.Adam was chosen for its ability to

adaptively tune learning rates. A weight decay of 1e-4 was
added to reduce overfitting.

● Loss Function: torch.nn.CrossEntropyLoss() is favored for
multiclass classification problems. Allows for optimization
of confidence and not just accuracy

● Learning Rate Scheduler: ReduceLROnPlateau was used to
reduce the learning rate on validation loss plateaus. Initial
learning rate was 8.00e-3, final was 6.10e-8

● Epochs: Optimized experimentally, ran until significant
learning rate decrement and final plateau (final training was
200 epochs).

Classifier Results
● Just shy of 95% accuracy
● Jagged val curves related to higher

learning rate
● Stabilization within ~150 epochs

Classifier Results
● High accuracy as binary reachability

classifier (79,988/80,000)
● Percentile classification streamlines

data generation but makes for blurry
boundaries

● Overall shows promise for
control/trajectory applications, could be
coupled with IK fallback for 100%
accuracy and ~95% less IK calls

●

Problem Definition
4-DOF Direct IK Estimator (ML Model)
● We developed a supervised machine learning model that

predicts a feasible and accurate joint configuration for a
4-DOF robotic arm, given a desired end-effector 3D pose

● To handle the multi-modal nature of the IK problem, we
clustered the training data in joint space using KMeans,
with each cluster representing a family of solutions.

● The 4-DOF robot was implemented in PyBullet with a
custom URDF and synthetic datasets were generated using
Latin Hypercube Sampling across each joint’s limits.

●

Model Data
● Latin Hypercube Sampling: 500,000

random samples generated for [θ₁, θ₂, θ₃, θ₄]
within joint limits (−π to π).

● Forward kinematics for each sample:
Computes corresponding end-effector
position and orientation ([x, y, z, qₓ, qᵧ, qz, qw])
using custom URDF and PyBullet.

● Pose labeling: Each data point paired with its
originating joint angles, enabling direct
mapping from (x, y, z, yaw) to [θ₁, θ₂, θ₃, θ₄].

● Cluster assignment: K-Means clustering on
joint angle space (n_clusters = 4) to group
multiple IK solutions for a given pose (e.g.,
“elbow up”/“elbow down”).

Model Data
● Train/test split: Stratified sampling by cluster

ensures balanced evaluation; typically 85%
training, 15% test.

● Preprocessing: Standardization (mean,
variance) of both input poses and joint angles
to improve model convergence and
generalization.

● Visualization: 3D scatter plots confirm
uniform workspace coverage and highlight
clustered structure of joint solutions.

IK Model
● Model: Multi-layer perceptron (MLP)

implemented with scikit-learn’s
MLPRegressor.

● Input: 4D pose vector — [x, y, z, yaw] of the
end-effector (yaw extracted from quaternion
for simplicity).

● Output: 4 joint angles — [θ₁, θ₂, θ₃, θ₄].
● Hidden Layers: Three fully-connected layers,

each with 256 neurons (optimized
experimentally).

● Activations: ReLU activation after each
hidden layer to enable nonlinear mapping.

IK Model Training
Training Regime:
● Optimizer: Adam (default in scikit-learn), batch

size = 1000, early stopping based on validation loss.
● Data normalization: StandardScaler on both input

and output vectors.
● Clustered Regression: For multi-valued IK,

K-Means clustering applied in joint space; separate
MLP for each cluster improves solution diversity
and accuracy.

● Post-processing: Best cluster solution selected
using a forward kinematics (FK) consistency check
(minimum pose error).

IK Model Results
● Achieved sub-centimeter average end-effector

error: Most predictions are within ~2 cm of ground
truth position, within some applications’ tolerances.

● MAE in joint space is higher, but physically
unimportant: Multiple joint angle combinations can
yield nearly identical end-effector positions, so
end-effector (EE) error is a more meaningful metric
for redundancy-rich arms.

IK Model Results
● Workspace error heatmap shows low error across

nearly all of the robot’s workspace; outliers are rare
and typically occur near the workspace boundaries
or singularities.

● ML model is competitive with state-of-the-art IK
solvers in both speed and accuracy for 4-DOF;
inference is extremely fast (<1 ms per sample),
compared to >10× slower analytical/numerical
solvers.

● Visualization overlays and histogram confirm
accurate and consistent predictions; the vast
majority of errors cluster near zero with very few
failures or large deviations.

Thank you!
 References
 [1] F. L. Tagliani, N. Pellegrini, and F. Aggogeri, “Machine learning sequential methodology for robot

inverse kinematic modelling,” Applied Sciences, vol. 12, no. 19, p. 9417, Sep. 2022.
doi:10.3390/app12199417

 [2] M. N. Vu, F. Beck, M. Schwegel, C. Hartl-Nesic, A. Nguyen, and A. Kugi, “Machine learning-based
framework for optimally solving the analytical inverse kinematics for redundant manipulators,”
Mechatronics, vol. 89, p. 102970, 2023. doi:10.1016/j.mechatronics.2023.102970

 [3] BioRob 4-DOF robot arm kinematic structure and table with DH parameters. Available:
https://www.researchgate.net/figure/BioRob-4-DOF-robot-arm-kinematic-structure-and-table
-with-DH-parameters_fig4_220850180

 [4] Scikit-learn: StandardScaler documentation. Available:
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

 [5] Scikit-learn: MLPRegressor documentation. Available:
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

 [6] Robotics Unveiled: Velocity, Manipulability & Force Ellipsoids. Available:
https://www.roboticsunveiled.com/robotics-velocity-manipulability-force-ellipsoids/

 [7] R. F. Reinhart, Z. Shareef, and J. J. Steil, “Hybrid analytical and data-driven modeling for
feed-forward robot control,” Sensors, vol. 17, no. 2, p. 311, Feb. 2017. doi:10.3390/s17020311

 [8] J. Zeng et al., "Learning-based Inverse Kinematics for Redundant Robots: A Review," Journal of
Computational Design and Engineering, vol. 11, no. 3, pp. 248-265, 2024. Available:
https://academic.oup.com/jcde/article/11/3/248/7684300

