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Background

Inverse 
Kinematics
Solve for joint angles 
(joint-space) from 
end-effector position 
(task-space) 

Traditional 
Methods
Traditional methods 
involve numerical 
solvers that are 
Jacobian-based  and 
are iterative. Often are 
slow and provide one 
solution when there 
are multiple 
possibilities

Using AI/ML 
in IK
Neural network-based 
approaches to IK and 
reachability 
estimation can 
outperform 
conventional solvers in 
both speed and, with 
careful design, 
generalization.



Project Goals
● Predict joint-space solutions for 4-DOF arms: We aim to rapidly 

estimate feasible joint configurations for a desired end-effector 
pose using a machine learning regressor, bypassing slow iterative 
solvers. By mapping 3D position and yaw orientation to joint angles, 
our model enables real-time inverse kinematics suitable for online 
control.

● Classify the feasibility and conditioning of postures: We seek to 
identify, via classification models, whether a desired end-effector 
pose is reachable (i.e., there exists at least one valid solution) and 
whether the associated joint configuration is well-conditioned for 
reliable control.



Project Evolution
● 4-DOF IK Regression Pipeline: Developed a robust 

supervised learning pipeline for 4-DOF arms, achieving 
sub-centimeter accuracy and efficient inference despite 
reduced complexity.

● 6-DOF Classification Approach: Due to the 
high-dimensional, multi-modal nature of 6-DOF IK, we 
transitioned to classification models, predicting the 
feasibility and expected quality of IK solutions



Problem Definition
6-DOF Feasibility & Conditioning Classifier 

● Observed that directly learning inverse kinematics for a 6-DOF 
robot using regression was ineffective due to the complex and 
highly multimodal nature of the solution space.

● Implemented a classifier that categorises the quality of 
end-effector poses based on the inverse condition number of the 
Jacobian matrix. Labels we used are: unreachable, reachable but 
near-singular, reachable and adequately conditioned, and reachable 
with high manipulability.

● A  k-1 value near zero indicates a singular configuration where 
certain directions of movement are lost, while a value near one 
implies high manipulability and stability.

● Manipulability refers to a scalar measure of how easily a robot’s 
end-effector can move in different directions from a given posture.



Classification Data
● Joint space sampling for reachable points (N 

= 400,000)
● Reachable points classified on percentile 

basis of inverse kappa (bottom 20%, middle 
60%, upper 20%)

● For unreachable points: KDTree filtering based 
on reachable dataset plus inverse kinematics 
fallback (N = 160,000; half inside arm sphere 
and half outside)



Classification Model
● Model: Multilayer perceptron implemented in 

PyTorch using torch.nn
● Input: 7D task-space vector 

[x, y, z, qx, qy, qz, qw].
● Output: 4 logits (one per class).
● Hidden Layers: Four nn.linear with 

hidden_size = 256 (optimized experimentally)
● Activations: nn.ReLU after each hidden layer 

introduces nonlinearity and prevents gradient 
shrinking

● Final Layer: Linear, feeding into 
CrossEntropyLoss()



Classifier Training
● Optimizer: torch.optim.Adam was chosen for its ability to 

adaptively tune learning rates. A weight decay of 1e-4 was 
added to reduce overfitting.

● Loss Function: torch.nn.CrossEntropyLoss() is favored for 
multiclass classification problems. Allows for optimization 
of confidence and not just accuracy

● Learning Rate Scheduler: ReduceLROnPlateau was used to 
reduce the learning rate on validation loss plateaus. Initial 
learning rate was 8.00e-3, final was 6.10e-8

● Epochs: Optimized experimentally, ran until significant 
learning rate decrement and final plateau (final training was 
200 epochs).



Classifier Results
● Just shy of 95% accuracy
● Jagged val curves related to higher 

learning rate
● Stabilization within ~150 epochs



Classifier Results
● High accuracy as binary reachability 

classifier (79,988/80,000)
● Percentile classification streamlines 

data generation but makes for blurry 
boundaries

● Overall shows promise for 
control/trajectory applications, could be 
coupled with IK fallback for 100% 
accuracy and ~95% less IK calls

●



Problem Definition
4-DOF Direct IK Estimator (ML Model)
● We developed a supervised machine learning model that 

predicts a feasible and accurate joint configuration for a 
4-DOF robotic arm, given a desired end-effector 3D pose

● To handle the multi-modal nature of the IK problem, we 
clustered the training data in joint space using KMeans, 
with each cluster representing a family of solutions.

● The 4-DOF robot was implemented in PyBullet with a 
custom URDF and synthetic datasets were generated using 
Latin Hypercube Sampling across each joint’s limits.

●



Model Data
● Latin Hypercube Sampling: 500,000 

random samples generated for [θ₁, θ₂, θ₃, θ₄] 
within joint limits (−π to π).

● Forward kinematics for each sample: 
Computes corresponding end-effector 
position and orientation ([x, y, z, qₓ, qᵧ, qz, qw]) 
using custom URDF and PyBullet.

● Pose labeling: Each data point paired with its 
originating joint angles, enabling direct 
mapping from (x, y, z, yaw) to [θ₁, θ₂, θ₃, θ₄].

● Cluster assignment: K-Means clustering on 
joint angle space (n_clusters = 4) to group 
multiple IK solutions for a given pose (e.g., 
“elbow up”/“elbow down”).



Model Data
● Train/test split: Stratified sampling by cluster 

ensures balanced evaluation; typically 85% 
training, 15% test.

● Preprocessing: Standardization (mean, 
variance) of both input poses and joint angles 
to improve model convergence and 
generalization.

● Visualization: 3D scatter plots confirm 
uniform workspace coverage and highlight 
clustered structure of joint solutions.



IK Model
● Model: Multi-layer perceptron (MLP) 

implemented with scikit-learn’s 
MLPRegressor.

● Input: 4D pose vector — [x, y, z, yaw] of the 
end-effector (yaw extracted from quaternion 
for simplicity).

● Output: 4 joint angles — [θ₁, θ₂, θ₃, θ₄].
● Hidden Layers: Three fully-connected layers, 

each with 256 neurons (optimized 
experimentally).

● Activations: ReLU activation after each 
hidden layer to enable nonlinear mapping.



IK Model Training
Training Regime:
● Optimizer: Adam (default in scikit-learn), batch 

size = 1000, early stopping based on validation loss.
● Data normalization: StandardScaler on both input 

and output vectors.
● Clustered Regression: For multi-valued IK, 

K-Means clustering applied in joint space; separate 
MLP for each cluster improves solution diversity 
and accuracy.

● Post-processing: Best cluster solution selected 
using a forward kinematics (FK) consistency check 
(minimum pose error).



IK Model Results
● Achieved sub-centimeter average end-effector 

error: Most predictions are within ~2 cm of ground 
truth position, within some applications’ tolerances.

● MAE in joint space is higher, but physically 
unimportant: Multiple joint angle combinations can 
yield nearly identical end-effector positions, so 
end-effector (EE) error is a more meaningful metric 
for redundancy-rich arms.



IK Model Results
● Workspace error heatmap shows low error across 

nearly all of the robot’s workspace; outliers are rare 
and typically occur near the workspace boundaries 
or singularities.

● ML model is competitive with state-of-the-art IK 
solvers in both speed and accuracy for 4-DOF; 
inference is extremely fast (<1 ms per sample), 
compared to >10× slower analytical/numerical 
solvers.

● Visualization overlays and histogram confirm 
accurate and consistent predictions; the vast 
majority of errors cluster near zero with very few 
failures or large deviations.



Thank you!
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